Angebote für Promovierende

Willkommen auf der UTN-Karriereseite für zukünftige Promovierende!

Promoviere an der UTN und begib dich auf eine spannende Reise zu akademischer Exzellenz und persönlicher Entwicklung. Im Mittelpunkt deiner Promotion steht deine eigene Forschung, in der du von einem Komitee fachspezifisch und interdisziplinär begleitet wirst. Dadurch ermöglichen wir dir einen klaren Weg zum Abschluss.

An der UTN legen wir großen Wert darauf, dir eine solide Grundlage in deinem Fachgebiet zu vermitteln und gleichzeitig deine eigenen Forschungsinteressen zu unterstützen. Wir bieten dir Struktur sowie individuelle Beratung. Außerdem fördern wir eine dynamische Lernumgebung, die optimaler Rahmen für Innovation und intellektuelle thematische Forschung ist.

Bevor du deine Bewerbung einreichst, bitten wir dich, dich mit den UTN-Promotionsrichtlinien vertraut zu machen. Detaillierte Informationen findest du unter dem folgenden Link: Promotion an der UTN

In den Anforderungen und Richtlinien erhältst du ein klares Verständnis der Erwartungen und Möglichkeiten, die dir an der UTN offenstehen.

Die UTN ist ein Ort, der Menschen unabhängig von Geschlecht, Alter, sexueller Orientierung, Weltanschauung, Religion, Herkunft oder Behinderung Wissen und Chancengleichheit bietet. Die Stellen sind für die Besetzung mit schwerbehinderten Menschen geeignet.

Wenn du weitere Fragen hast, helfen wir dir gerne weiter.

  stars@utn.de

Promotionsthemen

Promotion an der UTN im Bereich „User Experience, Learning Experience Design, und Usability Research“ (m/w/d)

Promotion an der UTN im Bereich „User Experience, Learning Experience Design, und Usability Research“ (m/w/d)

Die Technische Universität Nürnberg (UTN) bietet eine inspirierende und interdisziplinäre Forschungsumgebung mit Zugang zu modernsten Ressourcen. Sie ist der ideale Ort, um zukunftsträchtige Entdeckungen zu machen und einen bedeutenden Beitrag zu spannenden Forschungsfeldern zu leisten.

Die Technischen Universität Nürnberg (UTN) bietet die Möglichkeit einer voll finanzierten interdisziplinären Promotion. Wir suchen hoch motivierte und talentierte Personen, die unser dynamisches und internationales Forschungsteam verstärken und einen Beitrag im Bereich User Experience (UX) and Learning Experience (LX) Research (inkl. Usability, soziotechnische Heuristiken) leisten. Sie werden unter anderem im Projekt des Campusmanagementsystems der UTN mitarbeiten, z.B. zur Demonstration zur User Experience in UTNexus, und Sie sind in agile Rückkopplungsprozesse mit dem internen Softwareentwicklungsteam eingebunden und arbeiten ggfs. mit einer externen Dienstleistung zusammen. Ein Campus-Management-System (CaMS) kann als eine sozio-technische Verflechtung von technischen Artefakten und sozialen Praktiken verstanden werden. Aus dieser Sicht ist weitere Forschung im Bereich UX und LX erforderlich.

Ihre Aufgabe:

  • Im Projekt des Campusmanagementsystems der UTN untersuchen Sie, wie dieses System optimiert werden kann hinsichtlich Benutzerfreundlichkeit, „look & feel“ Effektivität und Effizienz sowie Orientierung an Standards, z.B. ISO 9241
  • Untersuchung eines Mehrwerts von sozio-technischen Heuristiken (socio-technical-pedagogical Usability) gegenüber bekannten Methoden wie beispielsweise System Usability Scale, Optimierung der Benutzererfahrung, Anwenden und Weiterentwicklung von User-Centered-Design Strategien
  • Forschung zu soziotechnischen Heuristiken und Weiterentwicklung von user experience oder learning experierence Methoden
  • Aufbau des UX-LX-Labs inkl. Anleitung studentischer Mitarbeitenden

Ihr Profil:

  • Abgeschlossenes wissenschaftliches Hochschulstudium (Staatsexamen, Diplom oder Master) mit Bezug zu User Experience oder Usability (Gebrauchstauglichkeit)
  • Interesse an interdisziplinärer Kooperation in Forschung
  • Wünschenswert sind erste Erfahrungen im UX Bereich
  • Gute Deutsch- und Englischkenntnisse oder Bereitschaft, Deutsch/Englisch zu erlernen

Interessiert?

Senden Sie bitte Ihre Bewerbung auf Zulassung zur Promotion an stars@utn.de. Weitere Informationen zu den Zulassungsvoraussetzungen finden Sie unter https://www.utn.de/de/forschung/promotion/.

Wenn Sie in die engere Auswahl kommen, erhalten Sie eine Einladung zu einem Interview und haben die Möglichkeit, Ihre bisherige Forschungsarbeit vorzustellen.

Bitte richten Sie alle inhaltlichen Anfragen an Gründungsvizepräsidentin Prof. Dr. Isa Jahnke (vp-learning@utn.de). Bei allgemeinen Fragen wenden Sie sich bitte an stars@utn.de.

Promotion an der UTN im Bereich Klassische Philologie mit dem Schwerpunkt Gräzistik zu einem Thema der Platonforschung” (m/w/d)

Promotion an der UTN im Bereich „Klassische Philologie mit dem Schwerpunkt
Gräzistik zu einem
Thema der Platonforschung“ (m/w/d)

Die Technische Universität Nürnberg (UTN) bietet eine inspirierende und interdisziplinäre Forschungsumgebung mit Zugang zu modernsten Ressourcen. Sie ist der ideale Ort, um zukunftsträchtige Entdeckungen zu machen und einen bedeutenden Beitrag zu spannenden Forschungsfeldern zu leisten.

Das Department Liberal Arts und Sciences an der Technischen Universität Nürnberg (UTN) bietet die Möglichkeit einer voll finanzierten interdisziplinären Promotion. Wir suchen hoch motivierte und talentierte Personen, die unser dynamisches und internationales Forschungsteam verstärken und einen Beitrag zur Spitzenforschung im Bereich Klassische Philologie mit dem Schwerpunkt Gräzistik zu einem Thema der Platonforschung leisten.

Das Department of Liberal Arts and Sciences der Technischen Universität Nürnberg befindet sich im Aufbau. Es strebt eine besonders intensive Kooperation zwischen Geistes-, Sozial- und Naturwissenschaften sowie mit den Ingenieurwissenschaften an. Die Technische Universität Nürnberg verfolgt das Ziel, Wissen und Knowhow geisteswissenschaftlicher Disziplinen in die Gestaltung des Wandels hin zu einer nachhaltigen Gesellschaft einzubringen. Es wird erwartet, dass Promovierende bereit sind, sich in diese Forschungskooperationen des Departments einzubringen. Zusätzlich übernehmen Promovierende pro Semester mindestens eine Lehrveranstaltung in den verschiedenen, gerade in der Konzeption befindlichen Studiengängen.

Ihr Profil:

  • Abgeschlossenes wiss. Hochschulstudium (Staatsexamen oder Master) in Klassischer Philologie
  • Prädikatsexamen in Klassischer Philologie (Hauptfach Gräzistik); nachgewiesene vertiefte Kenntnisse in der antiken Philosophie, bes. Platonismus und Aristotelismus der Antike und Spätantike
  • Breite literaturwissenschaftliche Kenntnisse der zentralen Autoren der antiken griechischen Literatur- und Wissensgeschichte
  • Interesse an interdisziplinärer Kooperation in Forschung und Lehre

Im Rahmen der wissenschaftlichen Qualifizierung erwartet Sie die Mitarbeit in Forschung und Lehre bei Frau Prof. Dr. Gyburg Uhlmann. Die Forschungsschwerpunkten liegen dabei bei „Artes liberales: Wissenschaft und Bildung“ und „Rhetorik und Philosophie: Meinung und begründetes Wissen“ sowie allgemein zur Philosophie, Bildungstheorie und -praxis, Rhetorik und Wissenschaftstheorie im  4. Jh. v. Chr. in Athen sowie den verschiedenen Formen des Platonismus und Aristotelismus der Antike und Spätantike. Zu den Aufgaben gehört weiterhin die Unterstützung bei der Organisation wissenschaftlicher Veranstaltungen und die Koordination von Schulkooperationsveranstaltungen. Die Dissertation soll zu einem Thema der Platonforschung im Bereich oben genannten Forschungsschwerpunkte angefertigt werden.

Interessiert?

Senden Sie bitte Ihre Bewerbung auf Zulassung zur Promotion an stars@utn.de. Weitere Informationen zu den Zulassungsvoraussetzungen finden Sie unter https://www.utn.de/de/forschung/promotion/.

Wenn Sie in die engere Auswahl kommen, erhalten Sie eine Einladung zu einem Interview und haben die Möglichkeit, Ihre bisherige Forschungsarbeit vorzustellen.

Bitte richten Sie alle inhaltlichen Anfragen an Frau Prof. Dr. Uhlmann (gyburg.uhlmann@utn.de). Bei allgemeinen Fragen wenden Sie sich bitte an stars@utn.de.

Wissenschaftliche Mitarbeiter/-innen (m/w/d) im Bereich Multi-Roboter-Systeme (Doctoral Researcher)

Wissenschaftliche Mitarbeiter/-innen (m/w/d) im Bereich Multi-Roboter-Systeme
(Doctoral Researcher))

Die Technische Universität Nürnberg (UTN) bietet eine inspirierende und interdisziplinäre Forschungsumgebung mit Zugang zu modernsten Ressourcen. Sie ist der ideale Ort, um zukunftsträchtige Entdeckungen zu machen und einen bedeutenden Beitrag zu spannenden Forschungsfeldern zu leisten.

Die Stellen sind im Multi-Robot Systems Satellite Lab unter Leitung von Dr. Tanja Kaiser des Department Engineering angesiedelt.

Wir suchen hoch motivierte und talentierte Personen, die unser dynamisches und internationales Forschungsteam verstärken und einen Beitrag zur Forschung im Bereich der Multi-Roboter-Systeme leisten möchten. Mögliche Fokusse für das Forschungsvorhaben zur Promotion sind heterogene Multi-Roboter-Systeme, hybride Entwurfsmethoden für Multi-Roboter-Systeme oder adaptive Multi-Roboter-Systeme. Die Problemlösung sollte mit Methoden der künstlichen Intelligenz erfolgen. 
  
Die Stellen sind auf drei Jahre befristet und dienen der eigenen wissenschaftlichen Qualifizierung im Rahmen einer Promotion.

Weitere Aufgaben umfassen:

  • Mitarbeit in Lehre und Forschung im Multi-Robot Systems Satellite Lab des Department Engineering
  • Kollaboration mit anderen Forscher/-innen
  • Kommunikation der eignen Forschungsergebnisse in Konferenzartikeln und Fachzeitschriftenbeiträgen 
  • Durchführung von Roboterexperimenten in Simulation und mit physischen Multi-Roboter-Systemen

Ihr Profil:

  • Abgeschlossenes wiss. Hochschulstudium (Diplom oder Master) in Informatik, Robotik, Künstlicher Intelligenz oder einem verwandten Gebiet
  • Erste Erfahrung mit Robotik und künstlicher Intelligenz
  • Gute Programmierkenntnisse
  • Große Motivation und Engagement

Wir bieten:

  • Ein auf drei Jahre befristetes Beschäftigungsverhältnis mit der Möglichkeit zur eigenen wissenschaftlichen Qualifikation
  • Die Vergütung erfolgt bei Vorliegen der persönlichen und tariflichen Voraussetzungen nach Entgeltgruppe in E 13 TV-L
  • Dynamisches und flexibles Arbeitsumfeld mit abwechslungsreichen Herausforderungen einer neu gegründeten Universität
  • Unterstützung in der persönlichen Karriereentwicklung durch die UTN School of StaRs
  • Chance zu Aufbau und Erweiterung interdisziplinärer Forschungskompetenzen und Netzwerke
  • Attraktive Fort- und Weiterbildungsmöglichkeiten

Die Stelle ist für die Besetzung mit schwerbehinderten Menschen grundsätzlich geeignet. Schwerbehinderte Bewerberinnen und Bewerber werden bei ansonsten im Wesentlichen gleicher Eignung, Befähigung und fachlicher Leistung bevorzugt eingestellt. Frauen werden gem. Art. 7 Abs. 3 Bayerisches Gleichstellungsgesetz zur Bewerbung aufgerufen.
Es besteht grundsätzlich die Möglichkeit zur Teilzeitbeschäftigung, sofern durch Jobsharing die vollumfängliche Wahrnehmung der Aufgaben sichergestellt ist.

Interessiert? Dann schicken Sie uns bitte Ihre aussagekräftige Bewerbung bis zum 16.01.2024. Bitte nutzen Sie ausschließlich unser Bewerbungsportal.

Sie haben Fragen? Ihre Rückfragen nehmen wir gerne unter Angabe der Kennziffer ENG-2023-79 per E-Mail an jobs@utn.de entgegen und rufen Sie zurück. Bei inhaltlichen Rückfragen zur Stelle können Sie sich unter tanja.kaiser@utn.de an Dr. Tanja Kaiser wenden.

Promotion an der UTN im Bereich „Machine Learning“ (m/w/d)

Opportunity for doctoral research at UTN (m/w/d)

The University of Technology Nuremberg (UTN) offers a stimulating and interdisciplinary research environment with access to cutting-edge resources. It is the ideal place to make groundbreaking discoveries and contribute to exciting fields of research.

The Department of Engineering at UTN is currently offering openings for two fully funded doctoral research opportunities (100% position – TVL E13) in the Machine Learning lab headed by Prof. Dr. Josif Grabocka.

https://www.utn.de/departments/department-engineering/machine-learning-lab/

We are seeking highly motivated and talented individuals to join our dynamic and international research team and contribute to cutting-edge research in machine learning. You will also assist Prof. Dr. Josif Grabocka in terms of teaching support and other administrational tasks.

Position Requirements:

  • A M.Sc. degree in Mathematics or Computer Science with top grades
  • Advanced knowledge of Math, Probability, Statistics and Linear Algebra
  • A M.Sc. thesis with a deep focus on Machine Learning, which goes beyond simply applying ML to a specific application
  • Very good knowledge of PyTorch and training large-scale Deep Learning models

How do I know if my level of Machine Learning knowledge is sufficient?
If you know well and comfortably understand most chapters of the following book, then your ML level is sufficient. (https://github.com/probml/pml-book/releases/latest/download/book1.pdf)

If your profile matches the requirements, please send the following documents as a zip file “name.surname.zip” with the subject „Application – Ph.D.“.

  • a personal statement that explains why you want to pursue a doctorate at UTN as well as which research area and department interests you and why
  • a copy of your identity card or passport
  • a complete, chronical, tabular curriculum vitae (CV) in English
  • certificates of your university degrees (M.Sc. degree and B.Sc.) or other equivalent qualification
  • transcript of records, diploma supplements, or overview of courses from your university degrees (M.Sc. degree and B.Sc.)
  • your M.Sc. thesis
  • A link to your GitHub projects
  • [Optional] Any prior publications

To apply for admission to doctoral research, please send your application to stars@utn.de.

For more information on the application process and admission requirements see
https://www.utn.de/en/research/doctoral-degree/.
For more information on the TV-L E13 payscale see https://oeffentlicher-dienst.info/tv-l/allg/.

If you are shortlisted, you will be invited for an interview and an opportunity to present your research work.

For any inquiries, please contact: machine-learning@utn.de.