Prof. Dr. Josif Grabocka
Automatisiertes maschinelles Lernen ist der Hauptschwerpunkt der Machine Learning Forschungsgruppe. Das Team entwickelt hochmoderne Methoden, um Hyperparameter von Deep-Learning-Modellen zu optimieren – beispielsweise für große Sprachmodelle, generative Modelle, bestärkendes Lernen und neuronale Netze für tabellarische Datensätze. Dazu evaluieren wir Meta- und Transfer-Learning-Ansätze und nutzen Gray-Box-Optimierungsstrategien. Zudem konzentrieren wir uns auf vertrauenswürdiges maschinelles Lernen, wobei wir Robustheit, Fairness, Energieeffizienz und Interpretierbarkeit als zusätzliche Optimierungskriterien für Deep-Learning-Modelle berücksichtigen.

Prof. Dr. Josif Grabocka
Professur für Machine Learning
Aktuelle Forschungsprojekte

ReScaLe: Responsible And Scalable Learning For Robots Assisting Humans,
Carl-Zeiss Stiftung, 2022 – 2028;
Abgeschlossene Forschungsprojekte
Industriekooperationsstipendium: Automatisierte KI, Eva Mayr-Stihl Stiftung, 2019-2022
Ausgewählte Publikationen
- 
Gresa Shala, André Biedenkapp, Pierre Krack, Florian Walter, Josif Grabocka
 Efficient Cross-Episode Meta-RL
 International Conference on Learning Representations (ICLR 2025)
- 
Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Samuel Dooley, Josif Grabocka, Frank Hutter
 Multi-objective Differentiable Neural Architecture Search
 International Conference on Learning Representations (ICLR 2025)
- 
Arlind Kadra, Sebastian Pineda Arango, Josif Grabocka
 Interpretable Mesomorphic Networks
 Neural Information Processing Systems (NeurIPS 2024)
- 
                Gresa Shala, Sebastian Pineda Arango, Frank Hutter, Josif Grabocka
 HPO-RL-Bench: A zero-cost benchmark for HPO in Reinforcement Learning
 International Conference on Automated Machine Learning (AutoML 2024)
 Runner-up Best Paper Award
- 
                Sebastian Pineda Arango, Fabio Ferreira, Arlind Kadra, Frank Hutter, Josif Grabocka
 Quickly Learning Which Pretrained Model to Finetune and How
 International Conference on Learning Representations (ICLR 2024)
- 
                Arlind Kadra, Maciej Janowski, Martin Wistuba, Josif Grabocka
 Scaling Laws for Hyperparameter Optimization
 Neural Information Processing Systems (NeurIPS 2023)
- 
                Sebastian Pineda Arango, Josif Grabocka
 Deep Pipeline Embeddings for AutoML
 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023)
- 
                Abdus Khazi, Sebastian Pineda Arango, Josif Grabocka
 Deep Ranking Ensembles for Hyperparameter Optimization
 International Conference on Learning Representations (ICLR 2023)
- 
                Gresa Shala, Thomas Elsken, Hadi Jomaa, Frank Hutter, Josif Grabocka
 Transfer NAS with Meta-Learned Bayesian Surrogates
 International Conference on Learning Representations (ICLR 2023)
- 
                Gresa Shala, Andre Biedenkapp, Frank Hutter, Josif Grabocka
 Gray-Box Gaussian Processes for Automated Reinforcement Learning
 International Conference on Learning Representations (ICLR 2023)
- 
                Martin Wistuba, Arlind Kadra, Josif Grabocka
 Supervising the Multi-Fidelity Race of Hyperparameter Configurations
 Neural Information Processing Systems (NeurIPS 2022)
- 
                Ekrem Öztürk, Fabio Ferreira, Hadi Jomaa, Josif Grabocka, Frank Hutter
 Zero-shot AutoML with Pretrained Models
 International Conference on Machine Learning (ICML 2022)
- 
                Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, Frank Hutter
 Transformers Can Do Bayesian Inference
 International Conference on Learning Representations (ICLR 2022)
- 
                Sebastian Pineda Arango, Hadi Samer Jomaa, Martin Wistuba, Josif Grabocka
 HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML
 Neural Information Processing Systems, Datasets and Benchmarks Track (NeurIPS 2021)
- 
                Arlind Kadra, Marius Lindauer, Frank Hutter, Josif Grabocka
 Well-tuned Simple Nets Excel on Tabular Datasets
 Neural Information Processing Systems (NeurIPS 2021)
- 
                Michael Ruchte, Josif Grabocka
 Scalable Pareto Front Approximation for Deep Multi-Objective Learning
 IEEE International Conference on Data Mining (ICDM 2021)
- 
                Ahmed Rashed, Lars Schmidt-Thieme, Josif Grabocka
 A Guided Learning Approach for Item Recommendation via Surrogate Loss Learning
 ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2021)
- 
                Martin Wistuba, Josif Grabocka
 Few-Shot Bayesian Optimization with Deep Kernel Surrogates
 International Conference on Learning Representations (ICLR 2021)
- 
                Hadi S. Jomaa, Lars Schmidt-Thieme, Josif Grabocka
 Dataset2vec: Learning dataset meta-features
 Journal of Data Mining and Knowledge Discovery (DAMI 2020)
- 
                Rafael R. Drumond, Lukas Brinkmeyer, Josif Grabocka, Lars Schmidt-Thieme
 HIDRA: Head Initialization across Dynamic targets for Robust Architectures
 SIAM International Conference on Data Mining (SDM 2020)
- 
                Ahmed Rashed, Josif Grabocka, Lars Schmidt-Thieme
 Attribute-aware non-linear co-embeddings of graph features
 ACM Conference on Recommender Systems (RecSys 2019)
- 
                Ahmed Rashed, Josif Grabocka, Lars Schmidt-Thieme
 Multi-Relational Classification via Bayesian Ranked Non-Linear Embeddings
 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2019)
Alle Publikationen
Publikationsliste von Prof. Dr. Josif Grabocka auf Google Scholar
Team
Du hast Fragen?
Dann wende dich an die Machine Learning Forschungsgruppe.
 
	









